skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yusuf, Farzana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carruthers, John; Duncan, Natasha; He, Canfei; Zhu, Shengjun (Ed.)
    This paper illustrates the application of machine learning algorithms in predictive analytics for local governments using administrative data. The developed and tested machine learning predictive algorithm overcomes known limitations of the conventional ordinary least squares method. Such limitations include but not limited to imposed linearity, presumed causality with independent variables as presumed causes and dependent variables as presume result, likely high multicollinearity among features, and spatial autocorrelation. The study applies the algorithms to 311 non-emergency service requests in the context of Miami-Dade County. The algorithms are applied to predict the volume of 311 service requests and the community characteristics affecting the volume across Census tract neighborhoods. Four common families of algorithms and an ensemble of them are applied. They are random forest, support vector machines, lasso and elastic-net regularized generalized linear models, and extreme gradient boosting. Two feature selection methods, namely Boruta and fscaret, are applied to identify the significant community characteristics. The results show that the machine learning algorithms capture spatial autocorrelation and clustering. The features generated by fscaret algorithms are parsimonious in predicting the 311 service request volume. 
    more » « less
  2. null (Ed.)
    The main purpose of this paper is to illustrate the application of causal inference method to administrative data and the challenges of such application. We illustrate by applying Bayesian networks method to 311 data from Miami-Dade County, Florida (USA). The 311 centers provide non-emergency services to residents. The 311 data are large and granular. We aim to explore the equity issues and biases that might exist in this particular type of service requests. As a case study, the relationship between population characteristics (independent variables) and request volume and completion time (dependent variables) is examined to identify the disparities, if any, from the observational data. The empirical analysis shows that there are no biases in services provided to any specific demographic, socioeconomic, or geographical groups. However, the administrative data do have various challenges for inferring causality due to missing or impure data, inadequacy, and latent confounders. The precautions of applying causal techniques to analyzing administrative data like 311 are discussed. 
    more » « less
  3. null (Ed.)